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PERFORMANCE OF CODED FH/MFSK 

IN A WORST-CASE TONE JAMMING CHANNEL 

1.  INTRODUCTION 

In this report we investigate several block and convolutional coding 

options which are applicable to noncoherent channels in the presence of tone 

jamming. The importance of tone jamming as an interference type arises from 

the fact that, in most situations, it is the worst-case interference against 

frequency hopped multiple frequency shift keying (FH/MFSK) modulation. In 

addition, tone jamming is a significant interference contribution in 

friendly-user networks using frequency hopped multiple access techniques 

where two or more users can transmit tone signals simultaneously in the same 

part of the frequency band. 

Tone jamming strategies are detrimental to uncoded FH/MFSK systems 

because they change the dependence of bit error probability on 

signal-to-noise ratio (Ej^/N^) from an exponential dependence (for white 

Gaussian noise channels) to an inverse linear one [1]. Yet, surprisingly, 

few papers have been written on the subject of tone jamming for coded FH/MFSK 

systems. Important exceptions are the recent works of Viterbi [2] and Levitt 

[3,4] which give considerable insight into the improvement which can be 

gained by using error control codes on tone jammed channels. Both of these 

investigators have studied tone jamming for special classes of receivers: 

Viterbi has treated a simple-to-implement soft-decision quantization receiver 
Manuscript approved July 12, 1984. 



1 
using random coding arguments, while Levitt has considered a wide variety of 

specific codes using a pure soft-decision quantized receiver aided by perfect 

side-information which indicates whether or not a jamming tone is present. 

In the present report we consider specific codes for a hard-decision receiver 

and we compare the results to those of Levitt's case of a pure soft-decision 

receiver with jammer state information (JSI). Also we compare results on the 

worst-case tone jamming channel to those on the worst-case partial band noise 

channel [5] for both cases, hard-decisions and soft-decisions with JSI. 

In Section 2 we elaborate on these introductory remarks by showing a 

system diagram and discussing the main distinctions between receiver types 

with regard to demodulators, quantizers, and decoders. In Section 3 we 

consider the worst-case tone and noise jamming models and review their 

uncoded bit error probability performance. With Section 4 we begin our 

analysis of the coded system and explain the approaches used for block and 

convolutional codes. In Section 5 all of the principal results are given for 

the coded system. Finally, a discussion of these results and recommendations 

for future work are given in Section 6. 



r 
2.  OVERALL SYSTEM DESCRIPTION 

A generic system diagram showing the basic subsystems is shown in 

Figure 1. The channel encoder includes all of the important coding 

possibilities, either convolutional or block. Since MFSK signaling is 

assumed, the M~ary modulator accepts log^M channel bits and selects one of 

M orthogonal tones to represent a data block. This tone is pseudo-randomly 

hopped in the frequency band at a rate of one hop per tone symbol. Higher or 

lower hopping rates are possible but we restrict the analysis to this simple, 

but important, case. 

The coded FH/MFSK signal is transmitted over the waveform channel. In 

this report, two waveform channels ar6 considered: the worst-case partial 

band tone jamming channel and the worst-case partial band Gaussian noise 

channel. Both of these are described in the next section. 

On the receiver side, the signal is dehopped and sent to the MFSK 

demodulator. This device is composed of a bank of M energy (envelope) 

detectors, one matched to each of the M~ary orthogonal tones. The 

demodulator output is an M-dimensional vector whose elements are the M energy 

outputs of the energy detector bank. The M-vector output may be considered 

as a point in an M-dimensional output space of the demodulator. 

The role of the quantizer is to partition the M-dimensional space into 

regions and provide the decoder with a metric (score) for each region. The 

metric information is also an M-dimensional vector whose M components are the 
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scores assigned to each of the M hypothesized transmitted signals. One 

extreme case is hard-decision quantization in which the demodulator 

observation space is divided into M regions defined by which of the M energy 

outputs is maximum in that region. The input corresponding to the largest 

energy is given a metric numerically equal to one while all others are zero. 

In the other extreme case, called pure soft-decision quantization, the 

energies in the M-dimensional output space are retained in analog form 

(unquantized) and provided to the decoder. (Any quantization scheme which 

partitions the M-dimensional space into more than M regions is referred to as 

soft-decision quantization.) Another important soft-decision technique is to 

create M+1 regions, with the (M+l)"" being an erasure region. Viterbi's 

ratio threshold quantizer [2] is another simple soft-decision scheme, one of 

many possible soft-decision quantization methods. 

Metric information from the quantizer is provided to the decoder. The 

decoder searches for codewords (for block codes) or paths (for convolutional 

codes) which yield the best metric. The decoder may also use 

side-information (if available) in order to alter the metric for a received 

signal. A special case of interest for jammed channels concerns the JSI 

mentioned in the previous section. In this idealization, the receiver knows 

when it has hopped into a jammed portion of the band and provides the decoder 

with a jamming indicator. The decoder uses this information by giving a 

received signal an infinite metric whenever the system hops into an unjammed 

part of the band (assuming no other background noise). Similarly, 

side-information may be used to create erasure channels. In this case the 

receiver senses a high interference environment and provides side-information 



to the decoder in the form of an erasure indicator. The decoder then assigns 

a zero metric to all erased signals. 

For the system shown in Figure 1, the ultimate quantity of interest is 

the decoded probability of bit error or, at least, an approximation or a 

tight upper bound. To determine this quantity it is useful to decouple the 

coding portion of the system from the remaining part as shown by the dotted 

line. The coding channel (that is, all but the encoder/decoder) can be 

characterized by the cutoff rate parameter R which represents the highest 

practically achievable co,de rate [6]. 

For orthogonal FH/MFSK signaling R is given by 

M 
^0  = ^°92 1+(M-1)D ' (T) 

where D is the Chernoff bound on the probability that the incorrect metric 

will exceed the correct metric when a pairwise comparison is made between the 

transmitted signal and one of the nontransmitted signals. For the case of 

hard-decision quantization with no side-information, where decisions are made 

on channel symbols and the raw (uncoded) probability of symbol error is 

P^,,, the Chernoff bound is easily found [7] to be SU J L  J 

V4P (l-P ) 
SU\   SU/ 
M-1 ■^  1   M-1        M-1  SU • ^'^' 

Similar expressions exist for most coding channels of interest. These are 

used to obtain the coded performance results which are discussed in Section 4. 

6 



3.  CHANNEL MODELS AND UNCODED SYSTEM PERFORMANCE 

There are a variety of partial band tone jamming models which have been 

used in previous work [1-4]. In this report we focus upon the worst-case 

tone jamminq channel for the uncoded FH/MFSK system. Coincidentally (and 

fortunately) this happens to be the simplest channel to analyze. 

The worst-case tone jamming channel can be described with reference to 

the FH/MFSK signaling format shown in Figure 2. A total hopping bandwidth W 

is divided into b subbands with each tone symbol being transmitted on a 

different frequency hop. Within a hopping subband, one of M tones carrying 

k = log2M bits is sent with signal power S. Candidate tones are 

orthogonally spaced with a frequency spacing 1/T = R , where T is the 

symbol duration and R is the symbol rate. 

HOPPING SUBBAND 
WITH M CANDIDATE TONES 

Ml-1 
I—r 

I ^^s^ 
!-• MR, - 

W = bMRg 

Figure 2 - FH/MFSK Signaling Format 



In the worst-case jamming strategy, the jammer places tones in as many 

hopping subbands as possible, with a maximum of one tone per subband. The 

jamming tone power is taken to slightly exceed the signal power, but for 

purposes of analytical convenience they are assumed to be equal. In this 

tone jamming strategy, we further assume that the jammer has perfect 

knowledge of the communicator's signal power level and frequency slots. The 

only knowledge that the jammer lacks is the frequency hopping code. 

For a total jamming power J, the jammer will attempt to force incorrect 

symbol decisions in n subbands by placing.tones in them with power J/n = S. 

A jamming tone will cause a symbol error if it hits one of the M-1 

nontransmitted tone slots in the transmission subband. The probability of 

symbol error is • 

su  b  M ' ^-^^ 

where n/b < 1 is the fraction of the subbands which are jammed. For 

orthogonal signals, it follows that the probability of bit error is 

p  = M ^ p  _ 1 n • ,.. 
•^bu  2(M-1) ^su  7 b ' -^ .    ^^> 

8 



Since the number of the subbands jammed is 

n = I , n < b , (5) 

and the total number of subbands is 

s 

where MR is the bandwidth of one subband, it follows that (4) may be 

written as 

1  1 MR      , 

bu  2 S  W  ,   S - MR  ' ^'> s 

But S/Rg is the symbol energy E , and this is related to the bit energy by 

^s = (^°92M) EJ^ . (8) 

Furthermore, if J/W is taken as the "equivalent" noise power spectral density 

N , we may rewrite (7) as 

p  ^ _M  J     ^>M  ,„. 
'^bu  2 log^M E./N   ' N " log-,M * ^^> 

11   b 0      0     2 



For the signal-to-noise ratio region not considered in (9), that is, 

E^^/NQ < M/log2M, it can be found that P^^ =  1/2. This region , 

however, corresponds to signal-to-noise levels that are too low to be of 

interest in this report. Over the range of interest, as given in (9), the 

dependence of P^^ on Eu/N is inverse linear with the probability of 

bit error increasing by a factor M/21og2M as M increases. These results 

are presented in both tabular form (Table I) and graphical form (Figure 3) at 

the end of this section. 

For purposes of comparison we also consider the worst-case partial band 

Gaussian noise jamming channel [1,8]. This channel is characterized by 

constant density additive Gaussian noise over a fraction of the total hopping 

transmission bandwidth. Thus, the nofse spectrum has density N /p  over a 

fraction p  of the band (where 0</5<l) and is zero elsewhere (over a fraction 

1-/5 of the band). We assume that the M candidate tone slots in each subband 

are either all interfered with or they are all noise free. As a worst-case 

condition, we consider only the situation where the parameter f>  is chosen so 

as to maximize the resulting probability of error. 

For uncoded FH/MFSK in a worst-case partial band Gaussian channel the 

results (excluding low signal-to-noise ratios) have been found in [1] as 

°^      E,/N 
b' 0 

10 



where the numerator H is a constant depending on the parameter M, given in 

Table I.  It is seen in Table I that H decreases with increasing M, giving a 

relatively small Ef^/N^ performance improvement (4.6 dB) over the binary 

case for large M. The inverse linear dependence of P,  on E./N is 
bu    b 0 

shown in Figure 3. 

Both jamming channels discussed in this section are inverse linear 

channels, and their only performance differences appear in the constant 

factors which multiply (Et^/'^o^" * "^^^  ratio of these factors (as it 

depends upon M) for the two channels of interest is given in Table I. This 

dB difference in Table I is reflected in Figure 3 as a shift factor which 

shows how much the tone channel is worse than the partial band noise 

channel. As M increases this difference becomes large for the uncoded case. 

A surprising result, shown in the Section 5, is that this same shift factor A 

is also applicable to the coded case (for any code) as long as hard-decision 

quantization is used. 

11 



TABLE I:  DIFFERENTIAL PERFORMANCE OF WORST-CASE UNCODED 

TONE AND PARTIAL BAND JAMMING CHANNELS 

TONE PBJ 

BU 
B 

EB/^O 
B = 

M H 
2LOG2M BU h/% 

M B H 

DIFFERENTTAT, ADVANTAGE 
OF TONE OVER PBJ 

A =  10   LOG^o  -§- 

2 1 .37 ^.3 DB 

4 1 .23 6.3 DB 

8 1.33 .20 8.3 DB 

15 2 .18 10.5 DB 

32 3.2 .17 12.7 DB 

12 



'bu 

WC TONE 
-M =2,4 
M =8 
M = 16 

FIGURE 3 - BIT ERROR PROBABILITY FOR TONE AND WORST-CASE 
PARTIAL BAND NOISE CHANNELS (UNCODED CASE) 
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4.  PERFORMANCE EVALUATION TECHNIQUES FOR CODED SYSTEMS 

Against the sophisticated forms of jamming just described, the E,/N 

requirement of uncoded FH/MFSK is approximately 50 dB for a bit error 

-5 
probability of 10 . The importance of this channel degradation can be 

seen by considering the maximum jamming-to-signal power ratio J/S which can 

be tolerated at a communication receiver. This is commonly referred to as 

the jamming margin and it is usually taken as a figure of merit for spread 

spectrum receivers. The jamming margin may be written as 

where PG is the processing gain, that is, the ratio W/R, of the total 

hopped bandwidth to the information bit rate. 

In (11) we see that even if frequency hopping provides a processing gain 

of 10 (50 dB), this advantage will be lost to a jamming threat for which 

the Ej^/N^ requirement is of the order of 50 dB. With the use of error 

control coding, however, much of the loss of the uncoded system to jamming 

will be recovered. The need for coded spread spectrum systems can be 

understood by examination of the right hand side of (11): Spectral spreading 

is required for a large processing gain PG and error control coding is 

required for signal-to-noise efficiency (low E,/N requirement). 

14 



There are two basic forward error control coding techniques in common 

use. The first of these is convolutional coding. Analysis of the bit error 

probability performance of a convolutional code is usually accomplished by 

employing two upper bounding techniques which taken together are called the 

union-Chernoff bound. For most cases of interest (with decoded bit error 

-3 
probabilities of 10  or less) the error probability vs E./N 

performance results given by these bounds are generally pessimistic by 

approximately one or two dB. 

Using the union-Chernoff bound the decoded bit error probability P, 

for a convolutional code can be upper bounded by 

00 

Pb < f 2-^  A D^ , (12) 
i=d^  ^ 

where d^^ is the minimum free distance of the convolutional code, A. are 

the code weights, and D is the Chernoff bound associated with a single use of 

the coding channel. The intent of (12) is to separate the code from the 

coding channel and to write an expression which displays the individual 

contribution of each part [9]. The code weights A. are tabulated in 

standard references (for example, [10]) and the Chernoff bounds D for tone 

and noise jammed channels with hard-quantized and soft-quantized (with JSI) 

outputs are given in [4]. In all cases, the quantity D can be related to the 

channel symbol signal-to-noise ratio E^/N^ which, in turn, can be related 

to the information bit signal-to-noise ratio E,/N by 

15 



^s = Ml°92")Eb, (13) 

where R is the code rate (in channel bits per information bit). 

For block codes [9], the decoded probability of symbol error is given 

exactly by 

P 
s 

i=t+l    ^^' 

where N is the block length, t is the symbol error correcting capability of 

the code, P^^^ is the raw (uncoded) symbol error probability, and 0. is 

the average number of symbol errors remaining in a decoded sequence given 

that the channel caused i symbol errors. For most codes of interest, /3. is 

difficult to find, so it is helpful to use a simplifying approximation. This 

is done by noting that when more than t raw errors occur the decoder will at 

most correct t errors and at worst add t errors. This means that /3. is 

bounded in the range 

i-t<3.<i+t  ,    i>t  , (15) 

It has been found [9] that assigning a value of /?. = i is a reasonable 

approximation, so we can write 

16 



^-^ L KO^-^'0-^-r- "^' 
i=t+l 

If the code symbols are the symbols associated with the M~ary orthogonal 

waveform channel, then the decoded probability of bit error can be found from 

the result of (16) and is 

M 
^h ^ Trnnr ^c • (17) b  2(M-1) s 

For the special case of a binary channel (M=2) with a binary code we have 

V 

I 
i=t+l 

\~-i T. ^ (0 'j (^-'..r <^«' 

where P,  is raw bit error probability. 

The block coding results given above apply to the case of hard-decision 

quantization only. For block codes it is difficult to implement any kind of 

soft-decision quantization, with the exception of the case of erasure 

decoding. In this report we consider only the case of hard-decision 

quantization for block codes, so the results of (15), (17), and (18) are 

appropriate expressions of the system performance. 

17 



5.  RESULTS 

We first consider the decoded bit error probability results for a tone 

jamming channel with hard-decision quantization. These results will serve as 

a baseline of comparison for all soft-decision quantization schemes. In 

addition, hard-decision quantization is easy to implement and for block codes 

it is one of the few practical approaches. 

For the well-known binary convolutional codes with constraint length (K) 

equal to seven and code rates 1/2 and 1/3, the hard-decision results are 

shown (as labeled) in Figure 4. The results show that the E./N 

requirements for the rate-1/2 and rate-1/3 codes at 10"^ decoded bit error 

probability are 21.8 dB and 19.0 dB respectively. The results for these 

cases are each 4.3 dB worse than the corresponding results for the worst-case 

partial band noise channel presented in [5]. In fact, the performance 

difference for a specific code in going from a coded partial band noise 

channel to a coded tone channel is the same as it is for the uncoded case. 

In this example we have binary codes so the performance difference is 4.3 dB. 

The constant performance difference found in going from partial band 

noise channels with hard-decision quantization to tone channels with 

hard-decision quantization can be explained by examining equations (2) and 

(12) for convolutional codes and (16) and (18) for block codes. In all 

cases, the decoded bit error probability depends upon the code parameters and 

the raw symbol error probability of the coding channel. For fixed code 

parameters, a constant decoded bit error probability can be maintained by 

18 
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FIGURE it - DECODED BIT ERROR PROBABILITY 
FOR BINARY CONVOLUTIONAL CODES ON A 
TONE CHANNEL: HARD DECISIONS (HD) 
AND SOFT DECISIONS WITH JSI (SD/JSI) 
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keeping the raw symbol error probability constant in going from one channel 

to another. To do this we need to change the energy per channel bit 

according to the relationships displayed in the uncoded performance curves 

(Figure 3). The energy E^ shown in the uncoded curves should be considered 

as the channel energy E^ for the coded case. This channel energy is 

related to the information bit energy according to E = RE, . Since the 

code rate R is unchanged (fixed code), the dB difference in channel bit 

energies is the same as the dB difference in information bit energies. Hence 

the coded system displays the same shift factor as the uncoded system. For 

large alphabet size M, this factor becomes appreciable. This leads us to the 

conclusion that large alphabets are not good in tone jamming environments 

when hard-decision guantization is used. 

In Table II we show the hard-decision performance of a representative 

set of convolutional and block codes. The signal-to-noise requirements for a 

decoded bit error probability of 10" are given for the tone channel and 

the worst-case partial band channel. The first five codes shown are 

convolutional codes and the next four are block codes. Structural properties 

of all of these codes are given in [10]. The first two binary convolutional 

codes have been mentioned previously. The next two codes are optimal 

nonbinary codes. The rate-1/2 4~ary code is worse than the rate-1/2 binary 

code for tone jamming because of the increased alphabet size. The same may 

be said in comparing the rate-1/3 8~ary code with the rate-1/3 binary code. 

The popular dual-3 nonbinary convolutional code has poor hard-decision 

performance for both channels. This is true because the dual-3 code has poor 

distance properties.  Its main virtue is its ease of implementation for soft- 

decision decoding. The Reed-Solomon codes, which are nonbinary block codes 

20 



TABLE II: REQUIRED Eg/N^ TO ACHIEVE Pg=10"^ 

FOR SEVERAL CODES ON WORST-CASE TONE 

AND WORST-CASE PARTIAL BAND JAMMING 

CHANNELS (HARD DECISIONS ONLY) 

CODE 

E3/N0 FOR 

TONE CHANNEL 

Eg/No FOR 

PBJ CHANNEL 

BINARY CONVOLUTIONAL 
K=7. R=l/2 21.8 17.5 

BINARY CONVOLUTIONAL 

K=7. R=l/3 19.0 1^.7 

4^ARY CONVOLUTIONAL 

K=7. R=l/2 23.4 17.1 

S^ARY CONVOLUTIONAL 
K=7. R=l/3 22.2 13.9 

DUAL-3 31.3 23.0 

RS(7.3) 27.1 18.8 

RS(31.15) 23.3 10.5 

BCH(127.54) 19.6 15.3 

G0LAY(23.12) 23.1 18.8 

21 



with optimal distance properties, suffer from the performance loss which has 

been described for tone channels using higher alphabets. The RS(7,3) code is 

too short to be effective, while the longer RS(31,15) code is effective for 

the partial band noise channel but is poor for the tone channel. The 12.7 dB 

performance difference (between channels) is attributed to the 32-ary 

alphabet which the RS(31,15) code uses. The binary BCH(127,64) code shows 

good performance for tone channels but is somewhat difficult to implement. 

In addition there are virtually no practical possibilities for using 

soft-decision quantization with this code. The popular Golay(23,12) binary 

code has mediocre performance. The modest distance properties of this code 

are not a good match for the severity of these channels. 

The results shown in Table II reveal that none of the codes have 

adequate performance on a tone jamming channel when hard-decision 

quantization is used, Levitt [4] has analyzed many of these same codes for 

the case of pure soft-decision quantization assisted by perfect JSI. 

Although somewhat unrealistic, these results give the best-case results that 

can be obtained using an ideal decoder. Some of the key results are shown in 

Figure 4 and in Table III. 

In Figure 4, we consider the same two binary convolutional codes (K=7, 

R=l/2 and K=7, R=l/3), but with soft-decision quantization and JSI. In Table 

III, the results for these two codes and the two optimal nonbinary 

convolutional codes are presented for tone and partial band noise channels, 

all for the case of soft-decision decoding with perfect JSI. The 

22 



TABLE III: REQUIRED Eg/NQ TO ACHIEVE PB=10"5 

FOR OPTIMAL CONVOLUTIONAL CODES 

ASSUMING SOFT DECISIONS AND 

JAMMER STATE INFORMATION  . 

CODE WC/PBJ WC/TONE 

BINARY 
K=7. R=l/2 11.1 9.7 

BINARY 
K=7. R=l/3 

10.4 8.9 

K=7. R=l/2 
10.1 10.8 

8^ARY 
K=7. R=l/3 9.0 11.5 
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soft-decision results reveal some remarkable features. In Figure 4 we see 

that for the tone channel the binary codes show a performance improvement of 

more than 10 dB when comparing the results of soft-decision quantization with 

JSI to the hard-decision results. In Table III we see that for soft-decision 

quantization with JSI, the performance difference between tone and partial 

band noise channels virtually disappears, and for the binary case the tone 

channel actually supports better performance. As this example reveals, the 

tone jamming channel is not necessarily the overall worst-case channel. 

The remarkable results found by Levitt for the case of soft-decision 

quantization with JSI must be placed in perspective because Levitt's receiver 

contains an ideal decoder which is not yet realizable. The design challenge 

is to invent soft-decision algorithms'that approach Levitt's ideal 

performance and can be implemented with modest complexity. 
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6.  CONCLUSIONS AND RECOMMENDATIONS 

In this preliminary study of the use of forward error control codes on 

tone jamming channels, several key results have been found: 

(1) For hard-decision quantization the degradation due to alphabet size 

when comparing the tone channel to the worst-case partial band 

noise channel is the same for a coded system as for an uncoded 

system. 

(2) The improvement resulting from the use of soft-decision 

quantization with JSI instead of hard-decision quantization is 

usually greater than 10 dB for the tone jamming channel. 

(3) For binary codes, soft-decision quantization improves performance 

on the tone jamming channel so that it is better than the 

performance achievable against the worst-case partial band noise 

jamming channel. For nonbinary codes, performance is only slightly 

worse on the tone jamming channel compared to the worst-case 

partial band noise jamming channel. 

The importance of developing good soft-decision quantizing schemes is 

evident from these results. The idealized structures analyzed by Levitt are 

not realizable but the performance improvement potential is so great that 

implementable receivers that approach this ideal are needed. There are many 
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possible approaches to a soft-decision receiver. The simplest of these is 

the erasure detector but even this alternative is difficult to implement. 

In this report we have considered a highly idealized form of tone 

jamming. Future studies should treat more realistic channel models, perhaps 

starting with the multiple-tone-jamming model discussed in [3]. Realistic 

models should contain a mixture of interference types and a next step would 

be to add Gaussian thermal noise to the tone interference. It should be 

recognized however, that each of these improvements in the model increase the 

level of analytical difficulty by a substantial amount. 
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